Chemistry and Biochemistry

Shinquin Programs of Chemistry and Biochemistry
Professors J. Byrne, Hoppe (Chair) and McGinnis; Associate Professors Rizzolo and N. Blank; Assistant Professors Guth and Frisbie; Lecturers Milius, Hoeltge, and Rutkowski.

The Bachelor of Science in Chemistry and the Bachelor of Science in Biochemistry offer thorough and hands on laboratory oriented curricula. Our graduates are highly desired by industry and government employers for their laboratory skills, as well as being well qualified for admission to graduate and professional schools. The courses and labs required for these degrees assure that graduates are proficient in the fundamental principles of chemistry and prepared to apply these principles to specialized areas such as environmental, forensic, medicinal, and pharmaceutical chemistry.

Attainment of the Bachelor of Science in Chemistry requires at least 122 credits as does the Bachelor of Science in Biochemistry. Course work should conform to the following tables since many advanced chemistry courses have other courses as prerequisites. All courses listed in the tables are required, although the sequence varies somewhat for courses offered in alternate years. It is difficult for chemistry and biochemistry majors to schedule the required courses unless they follow the outline recommended here and pay special attention to the alternate year courses (designated with the symbol §).

The progress of all students majoring in chemistry and biochemistry will be evaluated by the department at the end of the first and second years. Students receiving an unsatisfactory evaluation will be requested to change majors.

In addition to offering a rigorous, quality curriculum in chemistry and biochemistry, the faculty is committed to providing quality instruction in our introductory courses. All of our 100 level courses are consistent with the General Education Goals of the university. These courses provide the student with an introduction to the scientific method, the correct and effective representation of data, and develop the students' critical thinking skills by allowing the analysis and interpretation of experimental data.

Chemistry courses taken for 3 credits, without a laboratory, will only satisfy free elective or chemistry minor requirements. Chemistry and biochemistry majors must enroll in the 4 credit option of each course required by their major.
B.S. in Chemistry - Curriculum Map

First Year

Fall	Credits	Spring	Credits
CH 103	4	CH 104	4
General Chemistry I		General Chemistry II	
EN 101	3	EN 102 Composition and Literature II	3
Composition and Literature I	4MA 122 Calculus II		
MA 121	3	Intro. Computer Science 1	4
Calculus I	$\mathbf{1 4}$		3
Elective		$\mathbf{1 4}$	

Second Year

Fall Credits Spring Credits

4 CH 226
Organic
Chemistry II or
328 Physical
Chemistry
II and 338
Physical
Chemistry
Laboratory II ${ }^{\S}$
4 PS 212
University
Physics II
3 EN 202 World
Literature $\|^{2}$
3 MA 224
Differential
Equations
0-1 CH 204
Quantitative
Analysis (or
Elective) ${ }^{\S}$

Third Year

Fall	Credits	Spring
CH 225	4	CH 226
Organic		Organic
Chemistry I or		Chemistry II or
327 Physical		328 Physical
Chemistry I and		Chemistry
337 Physical		11 and 338
Chemistry		Physical
Laboratory $\mathrm{I}^{\text {§ }}$		Chemistry
		Laboratory II ${ }^{\text {§ }}$
CH 438	3	CH 204
Advanced		Quantitative
Inorganic		Analysis or 314
Chemistry		Instrumental
(or SC/MA		Methods and
Elective) ${ }^{3, \S}$		315 Analysis
		Laboratory ${ }^{\text {§ }}$
PS 205 Basic	3-4	CH 324
Instrumentation		Biochemistry
in the Natural		1 (or SC/MA
Sciences (or		Elective) ${ }^{3, ~ §}$
Elective) ${ }^{\text {§ }}$		
Elective	3	Arts or
		Humanities
		Elective ${ }^{4}$
CH 214	0-1	Elective
Communication in Chemistry (or		
in 2nd year) ${ }^{\text {§ }}$		

Fourth Year

Credits
4
Organic
Chemistry II or
328 Physical

- 1

Physical
Chemistry
Laboratory II ${ }^{\S}$
3 CH 204
Quantitative
Analysis or 314
Instrumental
Methods and
315 Analysis
Laboratory ${ }^{8}$
3-4 CH 324
Biochemistry
I (or SC/MA
Elective) ${ }^{3, ~ §}$

Arts or Humanities Elective ${ }^{4}$

0-1 Elective

Fall
CH 421
Chemical
Synthesis and
Examination I
CH 438
Advanced
Inorganic
Chemistry (or SC/MA
Elective) ${ }^{3, ~ §}$
PS 205 Basic
Instrumentation
in the Natural
Sciences (or
Elective) ${ }^{\S}$
CH 413
Chemistry
Seminar
SS Elective ${ }^{5}$

Credits Spring Credits
$3 \mathrm{CH} 422 \quad 3$
Chemical
Synthesis and
Examination II
3-4 CH $314 \quad 3-4$
\& CH 315 (or
Elective)
$4 \mathrm{CH} 324 \quad 4$
Biochemistry
I (or SC/MA
Elective) ${ }^{3, \S}$

1 PH Elective in
Ethics ${ }^{6}$

3 Elective 3
14-15
16-17
Total Credits: 120-127
1 MA 241 OR IS 121 OR EG 112 OR EG 110
2 EN 112 or EN 204 may be substituted for one semester of EN 201 - EN 202.
3 Recommended SC/MA courses: CH 439; MA 223 or MA 310; PS 232, PS 354
4 An Arts or Humanities course. Use the Arts and Humanities list for this requirement.
5 Social Science Elective; may enroll in any course in Sociology, Economics, Psychology or Political Science.
6 A Philosophy (PH) course in ethics. Use the General Education Ethics list for one of the ethics requirements.
§ This course is offered in alternate years. Both courses listed are required. For the years these courses are offered, see Course Descriptions.

B.S. in Biochemestry - Curriculum Map

First Year		
Fall	Credits	Spring
CH 103	4	CH 104
General		General
Chemistry I		Chemistry II
EN 101	3	EN 102
Composition and Literature I		Composition and Literature II
MA 107	4	MA 121
Precalculus		Calculus I
Mathematics		
BI 101	4	BI 102
Principles of		Principles of
Biology I		Biology II
	15	

Second Year

Fall	Credits	Spring
CH 225	4	CH 226
Organic Chemistry I		Organic Chemistry II
PS 201 General	4	PS 202 General
Physics I		

Credits	Spring	Credits
3-4	CH 328	3-4
	Physical	
	Chemistry	
	II or 324	
	Biochemistry ${ }^{\text {§ }}$	
3-4	CH 204	4
	Quantitative	
	Analysis or 314	
	Instrumental	
	Methods and	
	315 Analysis	
	Laboratory ${ }^{\text {§ }}$	
3-4	EN 202 World	3
	Literature I 2	
3	BI 304	3-4
	Physiology (or	
	Elective) ${ }^{5, ~ §}$	
	Elective or in	0-3
	4th year	
0-1		
12-16		13-18

Fourth Year

Fall	Credits	Spring	Credits
CH 327	3	CH 328	3
Physical		Physical	
Chemistry I (or		Chemistry II (or	
Elective) ${ }^{\text {§ }}$		Elective) ${ }^{\text {§ }}$	
CH 325	3-4	CH 314	3-4
Biochemistry II		\& CH 315 (or	
(or Elective) ${ }^{\text {§ }}$		Elective) ${ }^{\text {§ }}$	
Bl 306 Cell	4	BI 304	3-4
Biology (or HI		Physiology (or	
Elective (except		Elective) ${ }^{\text {§ }}$	
HI 209) $)^{\text {§ }}$			
CH 413	3-4	CH 422	3
Chemistry		Chemical	
Seminar (or HI		Synthesis and	
Elective (except		Examination II	
HI 209) $)^{\text {§ }}$			
Arts or	3	Elective or in	0-3
Humanities		3rd year	

16-18
Total Credits: 114-131
§ This course is offered in alternate years. Both courses listed are required. For the years these courses are offered, see Course Descriptions.
1 PS 211 - PS 212 may be substituted for PS 201-PS 202.
2 EN 112 or EN 204 may be substituted for one semester of EN 201 - EN 202.
3 Social Science Elective; may enroll is any course in Sociology, Economics, Psychology or Political Science.
4 A Philosophy (PH) course in ethics. Use the General Education Ethics list for one of the ethics requirements.
5 Recommended Science courses as electives: CH 438.
6 An Arts or Humanities course. Use the Arts and Humanities list for this requirement.

Minor in Chemistry

For award of a minor in chemistry students must complete six chemistry courses (of three or more credits), four of which must be above the 100 level. The chemistry minor is not available to those majoring in biochemistry or chemistry.

Courses

CH 100. Introduction to Forensic Science. 4 Credits.
An introductory survey course of Forensic Science/Criminalistics. The course will focus on scientific principles behind the recognition, collection, preservation, analysis, and interpretation of physical evidence found at a crime scene. The emphasis will be put on providing students with an understanding of the capabilities and limitations of forensic science as it is currently practiced. Lecture 3 hours, laboratory 3 hours. Recommended for students not majoring in science and engineering. Offered fall and spring semesters.

CH 103. General Chemistry I. 4 Credits.

Introduction to chemical characteristics and behavior, stressing atomic structure, stoichiometry, chemical equilibrium and kinetics, and descriptive chemistry of important elements. Laboratory includes qualitative and quantitative exercises, and syntheses. Lecture 3 hours, laboratory 3 hours. Credit will not be granted for more than one of the following sequences: CH $103-\mathrm{CH} 104, \mathrm{CH} 111-\mathrm{CH} 112$, or CH 103 CH 112. Prerequisites: One year of high school chemistry and a score of 2 or better on the Norwich University Mathematics Placement Test or a "C" or better in MA 103. Offered fall semesters.

CH 104. General Chemistry II. 4 Credits.

Continuation of the study of chemical characteristics and behavior, stressing atomic structure, stoichiometry, chemical equilibrium and kinetics, and descriptive chemistry of important elements. Laboratory includes qualitative and quantitative exercises, and syntheses. Lecture 3 hours, laboratory 3 hours. Credit will not be granted for more than one of the following sequences: CH $103-\mathrm{CH} 104, \mathrm{CH} 111-\mathrm{CH} 112$, or CH 103 - CH 112. Prerequisites: CH 103. Offered spring semesters.

CH 111. Chemistry and the Chemical World. 4 Credits.

Entry-level chemistry course introducing the non-science major to chemistry's impact upon the modern world. Qualitative interpretation of chemistry's role in areas of societal concern such as natural resources, environmental quality and pollution, and nuclear and alternative energy forms. Laboratory work will include qualitative as well as quantitative investigations. Lecture 3 hours, laboratory 3 hours. Credit will not be granted for more than one of the following sequences: CH $103-\mathrm{CH} 104$, CH 111 - CH 112, or CH 103-CH 112. Recommended for students not majoring in science and engineering. Prerequisite: Score of 1 or better on the Norwich University Mathematics Placement test or successful completion of MA 005. Offered fall semesters.

CH 112. Living Chemistry. 4 Credits.

Introduces practical aspects of organic and biochemistry and will include applied areas of biochemistry, such as drugs and chemical therapy, nutrition and food additives, toxicology, and consumer chemistry. Laboratory emphasis directed toward synthetic and analytical techniques as applied to these areas. Lecture 3 hours, laboratory 3 hours. Prerequisites: CH 111 or CH 103 , or one year of high school chemistry taken within last five years, or by permission of the instructor. Credit will not be granted for more than one of the following sequences: CH $103-\mathrm{CH} 104, \mathrm{CH} 111-\mathrm{CH} 112, \mathrm{CH} 111-\mathrm{CH} 113$ or $\mathrm{CH} 103-\mathrm{CH}$ 112. CH 112 or CH 113 may not be taken for credit after successful completion of CH 205. Recommended for students not majoring in science or engineering. Prerequisites: Score of 1 or better on the University Mathematics Placement Test or successful completion of MA 005.

CH 204. Quantitative Analysis. 4 Credits.

A course on the general principles and laboratory practices of quantitative analysis, applied principally in colorimetric and volumetric determinations. Studies of theory and practical procedures associated with gravimetric analysis, potentiometric titrations, and use of pH -meters. Lecture 3 hours, laboratory 6 hours. Prerequisites: CH 103, CH 104. Offered spring semesters of odd numbered years.

CH 205. Survey of Organic Chemistry. 4 Credits.

An introduction to the covalent compounds of carbon. Laboratory work involves elementary manipulation of organic laboratory equipment, preparation and identification of typical organic compounds, and the characteristics of the major functional groups. Lecture 3 hours, laboratory 2 hours. Prerequisites: CH $103-\mathrm{CH} 104$. Offered fall semesters of odd numbered years.

CH 214. Communication in Chemistry. 1 Credit.

This course illustrates the organization of the chemical literature, the efficient search of the literature and a formal introduction to scientific writing. Offered fall semesters of even years.

CH 225. Organic Chemistry I. 4 Credits.

An introduction to the study of carbon compounds; preparation and identification of typical compounds. Lecture 3 hours, laboratory 3 hours. Prerequisites: CH $103-\mathrm{CH} 104$ or by petition. Offered fall semesters.

CH 226. Organic Chemistry II. 4 Credits.

A continuation of the study of carbon compounds; preparation and identification of typical compounds. Lecture 3 hours, laboratory 3 hours. Prerequisite: CH 225. Offered spring semesters.
CH 314. Instrumental Methods. 3 Credits.
A course on the Theory of Modern Instrumental Methods. Lecture 3 hours. Prerequisites: CH 204 required, CH $327-\mathrm{CH} 328$ recommended. Offered spring semesters of even numbered years.

CH 315. Analysis Laboratory. 1 Credit.

A course that provides upper class laboratory experience in chemical methods of measurement and analysis. Laboratory 3 hours. Prerequisite: CH204. Offered spring semesters of even numbered years.

CH 324. Biochemistry I. 4 Credits.

A course on the chemical phenomena and energy effects in life processes. Topics include structure and function of biomolecules, metabolism (catabolism and anabolism), photosynthesis and recombinant DNA technologies. Lecture 3 hours, laboratory 3 hours. Prerequisites: CH 103-104, and either CH 205 or co-requisite of CH 226. Offered even numbered spring semesters.

CH 325. Biochemistry II. 4 Credits.

A continuation of the study of the chemical phenomena and energy effects in life processes. Topics include structure and function of biomolecules, metabolism (catabolism and anabolism), photosynthesis and recombinant DNA technologies. Lecture 3 hours, laboratory 3 hours. Prerequisite: CH 324. Offered even numbered fall semesters.

CH 327. Physical Chemistry I. 3 Credits.

A course on the physical properties and structure of matter; general principles and theories of chemical interaction. Major areas studied are chemical applications of thermodynamics; phase equilibria; electrochemistry; reaction kinetics; description of electronic structure of atoms and molecules. Lecture 3 hours. Prerequisites: CH103-104; corequisite; MA224 and college physics (recommended). Offered even numbered fall semesters.

CH 328. Physical Chemistry II. 3 Credits.

A continuation of the study of the physical properties and structure of matter; general principles and theories of chemical interaction. Major areas studied are chemical applications of thermodynamics; phase equilibria; electrochemistry; reaction kinetics; description of electronic structure of atoms and molecules. Lecture 3 hours. Prerequisite: CH 327. Offered odd numbered spring semesters.
CH 337. Physical Chemistry Laboratory I. 1 Credit.
Laboratory investigations with written formal reports on the physical properties and chemical behavior of substances. Laboratory 3 hours. Prerequisite or co-requisite: CH 327 . Offered even numbered fall semesters.

CH 338. Physical Chemistry Laboratory II. 1 Credit.

Laboratory investigations with written formal reports on the physical properties and chemical behavior of substances. Laboratory 3 hours. Prerequisite or co-requisite: CH 328. Offered odd numbered spring semesters.
CH 413. Chemistry Seminar. 1 Credit.
Part of a capstone experience that provides individual assignments, written reports, oral reports, and class discussions on chemical topics of current interest. Reading, writing, speaking and critical thinking skills are emphasized. Lecture 1 hour. Prerequisites: CH $225-\mathrm{CH} 226, \mathrm{CH} 327$ CH 328.
CH 421. Chemical Synthesis and Examination I. 3 Credits.
A capstone experience in which organic, inorganic and compounds of biological interest are synthesized and examined with respect to purity and properties. The objectives are to develop an integrated perspective on the general field of chemistry and to develop proficiency in practical laboratory procedures and in reporting results. Laboratory and occasional lectures 8 hours. Prerequisites or co-requisites: CH $225-\mathrm{CH} 226, \mathrm{CH}$ $327-\mathrm{CH} 328$. Offered fall semesters.

CH 422. Chemical Synthesis and Examination II. 3 Credits.

A capstone experience in which organic, inorganic and compounds of biological interest are synthesized and examined with respect to purity and properties. The objectives are to develop an integrated perspective on the general field of chemistry and to develop proficiency in practical laboratory procedures and in reporting results. Laboratory and occasional lectures 8 hours. Prerequisites or co-requisites: CH $225-\mathrm{CH} 226, \mathrm{CH}$ $327-\mathrm{CH} 328$. Offered spring semesters.

CH 425. Thesis. 1-3 Credit.

This course allows the student to conduct research on a project approved by the faculty of the chemistry and biochemistry programs. The student can be expected to perform the necessary experiments, organize and interpret the data and to communicate the results of the project with a comprehensive report. Prerequisites: CH $225-\mathrm{CH} 226$. Co-requisites: CH $327-\mathrm{CH} 328, \mathrm{CH} 438$. Permission of the program faculty is also required. The student may re-enroll in CH 425 for up to 6 credits.

CH 438. Advanced Inorganic Chemistry. 3 Credits.

A course on the chemistry of the elements: properties, characteristics, and behavior. Lecture 3 hours. Prerequisites: CH $327-\mathrm{CH} 328$. Offered fall semesters of odd numbered years.
CH 439. Advanced Organic Chemistry. 3 Credits.
An advanced and thorough development of topics introduced in CH 225 - CH 226. Lecture 3 hours. Prerequisites: CH $225-\mathrm{CH} 226$. Offered fall semesters of even numbered years.

CH 450. Topics in Chemistry. 3 Credits.
A course in which a selected limited topic in advanced chemistry is covered in depth. Offered on occasion. Prerequisite: permission of the instructor.

