Civil Engineering (CE)

Courses

CE 211. Surveying. 3 Credits.

A course in the theory and practice of plane surveying. Horizontal and vertical control, design of circular and parabolic curves, tachometry, construction surveys and earthwork quantities are covered in lecture. Fieldwork presents the practical applications of lecture material with the use of transits, tapes, levels, electronic distance measuring devices and theodolites. Classroom 2 hours, laboratory 3 hours. Prerequisite: MA 107.

CE 214. Site Development and Engineering. 4 Credits.

A course that teaches the tasks and considerations involved in environmentally sound land development. Road design and it's interaction with development sites will be presented. Other topics covered include contours, drainage utilities, cut and fill, and aesthetic considerations. Codes and legal requirements will also be covered. CADD (Computer Aided Drawing and Design) software specific to Civil Engieering work will be introduced and employed extensively on student projects.

CE 220. Introduction to Environmental Technology. 4 Credits.

A study of the fundamentals of environmental control technology. The course covers the topics of air pollution, water pollution, solid and hazardous wastes, and radioactive wastes. Noise pollution and control are also covered. The generation and treatment of wastes along with their effects on the environment are included in the course. The laboratory includes the basic methods of measuring pollution. Three Credits: Classroom 3 hours. Four Credits Classroom 3 hours, laboratory 2 hours. Prerequisite: CH 103 or CH 111. Not open to engineering students.

CE 318. Soil Mechanics. 3 Credits.

An introduction to the engineering properties of soil: soil classification; soil structure and mineralogy; water flow through soils; compressibility and consolidation; shear strength. Laboratory testing of soils and soil exploration. Offered to allow students from other institutions to transfer 3 credit equivalent courses.

CE 321. Materials Laboratory. 1 Credit.

A laboratory course in the application of basic mechanics of materials principles to cement, aggregate, concrete, steel and wood. Operation of various types of testing machines and gauges. Tests of tension, compression, flexure, torsion, impact, shear, hardness and fatigue. Laboratory observations, analysis, interpretation and reports. Classroom 1 hour, laboratory 2 hours. Corequisite: EG 301 or CE 351.

CE 322. Fluid Mechanics Laboratory. 1 Credit.

A laboratory course in which the principles of fluid mechanics are applied to civil engineering problems. The design and implementation of a laboratory research study, the analysis of data, the presentation of results, and the development of engineering conclusions are integral parts of this course. Lab topics include hydrostatics, pipeflow, open channel flow, flow measurement, and resistance to flow. Classroom 1 hour, laboratory 2 hours. Prerequisite or concurrent enrollment: EG 303.

CE 328. Soil Mechanics. 4 Credits.

An introduction to the engineering properties of soil: soil classification; soil structure and mineralogy; water flow through soils; compressibility and consolidation; shear strength. Laboratory testing of soils and soil exploration. Classroom 3 hours, laboratory 2 hours. Prerequisite: EG 301 or permission of the instructor.

CE 332. Engineering Hydrology. 3 Credits.

A study of the location, movement, and distribution of the waters of the earth for practical applications to society. This course includes the study of the engineering aspects of precipitation, evaporation, infiltration, steamflow and flood and drought prediction. The application of hydrological statistics and computer applications are stressed. Classroom 3 hours. Prerequisite: EG 303 or permission of the instructor.

CE 348. Structural Analysis. 4 Credits.

A course on the analysis of statically determinate and indeterminate beams, frames and trusses. Topics include loads to buildings, shear and moment diagrams, influence lines and classical methods of analysis. Computer applications are introduced using a general frame analysis program. The use of analysis in the overall design process is stressed using a semester-long project. Classroom 4 hours. Prerequisite: EG 301.

CE 351. Statics and Mechanics of Materials. 4 Credits.

A study of elementary, primarily two-dimensional engineering mechanics. Fundamental concepts and basic laws of statics, force systems, structures, and support reactions for loading patterns. Stress-strain relationships to forces: concepts and applications. Consideration of engineering materials and their suitability in various structures and mechanisms. Classroom 4 hours. Prerequisites: MA 107 and PS 201. Not open to engineering students.

CE 399. Intro to Transportation Eng. 3 Credits.

CE 419. Foundation Engineering. 3 Credits.

A course on the use of soil properties to determine bearing capacity and settlement of shallow and deep foundations. Design of earth and earth supporting structures. Classroom 3 hours. Prerequisite: CE 328 or permission of the instructor.

CE 421. Sanitary Engineering. 4 Credits.

Sources, quantities and constituents of water and wastewater are examined and their interaction with the environment is developed. Design of chemical, physical and biological treatment facilities according to current practice is stressed. The laboratory develops standard methods of chemical, physical and biological examination and analysis. Classroom 3 hours, laboratory 3 hours. Prerequisites: EG 303 and CH 104.

CE 422. Water and Wastewater Treatment. 3 Credits.

A study of physical, chemical and biological processes for water and wastewater treatment. The course emphasizes the evaluation of unit processes and the design of water and wastewater treatment facilities. Classroom 3 hours. Prerequisite: CE 421.

CE 432. Solid and Hazardous Waste Engineering. 3 Credits.

A course on the state-of-the-art techniques for disposal of solid and hazardous waste material. Aspects covered will be system design, public health protection, and environmental protection. Classroom 3 hours. Prerequisites: CH 104 and junior or senior status in engineering or science.

CE 433. Groundwater Hydrology. 3 Credits.

A course that covers the basic principles of groundwater flow and modeling, its development as a water source, prevention of groundwater contamination and contaminated groundwater remediation. Classroom 3 hours. Prerequisite: CE 328 or permission of the instructor.

CE 441. Transportation Engineering. 3 Credits.

The planning, design, and construction of transportation systems to meet the mobility requirements of society while considering economic, environmental, and societal constraints. System maintenance and administration are also included. Classroom 3 hours. Prerequisite: CE 211 or permission of the instructor.

CE 442. Design of Metal Structures. 3 Credits.

An introduction to the design of metal structures using the LRFD-AISC code as the basis. Topics include design of tension, compression and bending members; bolted and welded connections. Classroom 3 hours. Prerequisite: CE 348.

CE 444. Reinforced Concrete Design. 3 Credits.

An introduction to the design of reinforced concrete members under bending, shear and axial loadings according to ACI 318R code requirements. Topics also include one-way slabs, footings and retaining walls and an introduction to pre-stressed concrete. Use of the computer as a design tool is introduced. Classroom 3 hours. Prerequisite: CE 348.

CE 450. Air Pollution Control. 3,4 Credits.

A course presenting sources of air pollution and the effect on the environment, the measurement of air pollutants, modeling of air pollutant dispersion, and design of control measures. Use of manual monitoring techniques and physical and chemical fundamentals to measure air quality. Course may be taken for three credits without the lab. Classroom 3 hours, laboratory 3 hours. Prerequisite: EG 206.

CE 451. Air Pollution Control Equipment Design. 3 Credits.

This course builds on and amplifies material studied in CE 450. Properties of air pollutant emissions and thermodynamics, fluid mechanics and heat transfer principles are utilized to design air pollution control equipment. Several major design projects are undertaken by student teams; interim and final design reports are required. In addition, a module on air quality modeling is included. Classroom 3 hours. Prerequisite: CE 450.

CE 452. Introduction to Air Pollution Control. 3 Credits.

A course presenting sources of air pollution and the effect on the environment, the measurement of air pollutants, modeling of air pollutant dispersion, and design of control measures. Classroom 3 hours, laboratory 3 hours. Prerequisite: EG 206.

CE 453. Air Pollution Measurement Lab. 1 Credit.

Use of manual monitoring techniques and physical and chemical fundamentals to measure air quality. Laboratory 3 hours. Corequisite: CE 452.

CE 455. Structures I. 3 Credits.

This course builds directly on the material learned in CE 351 and is specifically directed to the study of the response of structural systems to various loadings. Gravity and lateral loads as well as load combinations on a structure are developed using appropriate building codes. The response of the structural system to imposed loading is studied by classical and computer analysis techniques. Finally, this course introduces the students to the design of simple steel structures that meet the appropriate building code. Classroom 3 hours. Prerequisite: CE 351. Not open to engineering majors.

CE 456. Structures II. 3 Credits.

This course is intended to introduce the students to and develop an understanding of, structural design of wood, concrete and masonry. Particular attention will be given to failure modes of the member types and materials. Each of the principal member types, beam and column as well as connections, will be studied and members designed to meet the appropriate code. Classroom 3 hours. Prerequisite: CE 455. Not open to engineering majors.

CE 457. Wood, Steel, and Concrete Structures. 4 Credits.

This course builds directly on the material learned in CE 351 and is specifically directed to the study of the response of structural systems to various loadings. Gravity and lateral loads as well as load combinations on a structure are developed using approriate building codes. The response of the structural system to imposed loading is studied by classical and computer analysis techniques. This course introduces the students to applications - the design of simple structures of wood, steel, concrete and other materials that meet the appropriate building code. Classroom 4 hours. Prerequisite CE 351. Not open to engineering majors.

CE 458. Structural Issues for Construction. 3 Credits.

This course is intended to introduce the students to structural building applications, and to develop knowledge and comprehension of structural design of steel, wood, concrete, and masonry. Particular attention will be given to concrete members, concrete form design requirements, steel connections, failure modes of the member types and materials. Detailed construction issues with each material will be emphasized. Each of the principal member types, beam and column as well as connections, will be studied and members designed to meet the appropriate code. Lecture 3 hours. Prerequisites: CE 455 or CE 457. Not open to engineering majors.

CE 460. Construction Management. 3 Credits.

A course on the organization, scheduling and management of the construction project utilizing CPM and PERT. Survey of management functions by which construction is authorized, purchased, supervised, accomplished, inspected and accepted, including labor management relations and site design. Classroom 3 hours. Prerequisite: MA 107.

CE 464. Specifications and Estimating. 1 Credit.

A laboratory in plan reading, quantity analysis and cost estimating of Civil Engineering projects. Students will be exposed to standard formats for specifications and estimating. Students will write sample specifications and will gain experience in construction estimation. Laboratory 3 hours. Prerequisites: CE 211 and CE 460.

CE 475. Senior Project Planning. 1 Credit.

Each student will work with a mentor and together will define and analyze a project so that an efficient design can be completed. The project scope will be developed, tasks will be laid out, and a schedule to complete the project will be created. All of this will be presented orally and in written form in a project proposal. Prerequisite: Senior status. Corequisite: CE 460.

CE 480. Senior Design. 3 Credits.

A capstone course in civil engineering. This course builds on and integrates the engineering concepts developed in prior course work into the complete design of a major civil engineering project. The course will require a written and an oral presentation of the completed design to include, where appropriate, plans and specifications. Prerequisites: CE 328, CE 348, and CE 421, or departmental approval.

CE 490. Advanced Topics. 4 Credits.

A course that provides instruction in an area of the instructor's special competence and student interests. Advanced topics would be presented in such areas as air pollution control, water and wastewater treatment, bioremediation, and nuclear radiation. Offered as the occasion demands. Prerequisite: senior standing.

CE 499. Applied Soils and Foundations. 4 Credits.